ORIGINAL PAPER

Benjamin N. Mijts · Bharat K.C. Patel

Random sequence analysis of genomic DNA of an anaerobic, thermophilic, halophilic bacterium. Halothermothrix orenii

Received: June 19, 2000 / Accepted: December 1, 2000 / Published online: February 1, 2001

Abstract A pBluescriptSK+ vector library consisting of 3,360 clones with an average insert size of 3.5 kb was constructed from the genome of Halothermothrix orenii, a halophilic and thermoanaerobic member of the family Haloanaerobiaceae. From both ends, 77 clones were sequenced using T3 and T7 vector primers generating 154 sequence tags, representing approximately 85 kb of the genome. Comparison of sequence tags against the Gen-Bank database using BLASTX identified 66 known proteins and 15 conserved hypothetical proteins. The putative proteins included a V-ATPase, hydrogenases, and enzymes with potential for industrial applications. The overall G + C% of the codons used was 42.9% with a thirdposition G + C content of 38.6%. High levels of excess acidic amino acids were not detected in the putative proteins of H. orenii as compared to the mesophilic haloanaerobes. This lack may be the result of reduced activity of acidic, halophilic enzymes at high temperatures and intermediate salt concentrations.

Key words Halophile · Thermophile · *Halothermothrix* orenii · Genomic sequence · V-ATPase · Sucrose phosphate synthase · Codon bias

Introduction

Moderately halophilic microbes (optimum growth between 5% and 20% NaCl) of the domain Bacteria are distinguished from nonhalophiles by a range of diverse molecular

Communicated by J. Wiegel

B.N. Mijts · B.K.C. Patel (⋈)

Microbial Discovery Research Unit, School of Biomolecular and Biomedical Sciences, Faculty of Science, Griffith University, Brisbane, Queensland 4111, Australia

Tel. +61-41772-6671; Fax +61-73875-7800 e-mail: bharat@genomes.sci.gu.edu.au

To date, two thermophilic moderate halophiles have been described, both of which are members of the low G+C DNA-containing gram-positive phylum. *Halothermothrix* orenii is a member of the family Haloanaerobiaceae, order Haloanaerobiales (Cayol et al. 1994), and grows at temperatures to 68°C in the presence of NaCl to 20% (optimal growth at 68°C and 10% NaCl), whereas Thermohalobacter berrensis, a member of the order Clostridiales, is more thermophilic than *Halothermothrix orenii* and grows readily at 70°C in the presence of 15% NaCl (Cayol et al. 2000).

adaptations that promote their survival and proliferation in

high-salt-containing environments. The aerobic and faculta-

tive anaerobic members of the moderate halophiles are

phylogenetically diverse and are distributed in numerous phyla of the domain Bacteria, whereas the less diverse halo-

philic obligate anaerobes are generally restricted to the

order Haloanaerobiales in the low G+C DNA-containing

phylum. These two groups of moderate halophiles are also

fundamentally different in their strategies for survival in

high salt concentrations (Madigan and Oren 1999). Mem-

bers of the order Haloanaerobiales studied to date counter-

act a high-salt environment by maintaining comparable high

salt levels within their cytoplasm (Oren 1986; Rengpipat et al. 1988), in contrast to the aerobic and facultative anaero-

bic moderate halophiles, which maintain low intracellular salt levels and synthesize compatible solutes such as

betaine. The 'salt-in' strategy is also found in members of

the order Halobacteriales, within the domain Archaea

(Rengpipat et al. 1988). This approach to maintaining cell

integrity requires both extracellular and intracellular enzymes and cell structures to be active or stable under

high-salt conditions.

Very little is known about genes and enzymes from anaerobic moderate halophiles of the domain *Bacteria*. The only protein sequence that has been determined for members of the order Haloanaerobiales is the ribosomal Aprotein from Haloanaerobium praevalens (Matheson et al. 1987). In this article, we report on the analysis of sequence tags determined from randomly selected clones of a Halothermothrix orenii genomic DNA library to gain information about the genetic structure of this bacterium. An objective of this study is to investigate the specific cellular and molecular adaptations that allow *H. orenii* to survive at high temperatures and salt concentrations, in particular any distinctive trend in overall amino acid usage in *H. orenii* proteins. Additionally, sequence tags corresponding to any proteins of potential in industrial applications are identified.

Materials and methods

Bacterial strains and plasmids

Halothermothrix orenii strain H168 was obtained from Dr. Bernard Ollivier (Institut de Recherche pour le Developpement [IRD], Universite de Provence, France). Escherichia coli strain DH10B [F-mcrA Δ(mrr-hsdRMS-mcrBC) φ80dlacZΔM15 ΔlacX74 endA1 recA1 deoR Δ(ara-leu)7697 araD139 galU galK nupG rpsL λ-] was used for construction of the genomic library in pBluescriptSK+ vector (Stratagene, La Jolla, CA, USA) using routine molecular biology methods (Sambrook et al. 1989).

Culturing of Halothermothrix orenii and DNA extraction

Halothermothrix orenii was grown anaerobically at 60°C in tryptone-yeast extract-glucose (TYEG) medium (Patel et al. 1985a) modified by the addition of 100 g l-1 NaCl. The techniques for preparing anaerobic media have been described previously (Patel et al. 1985b). A 100-ml culture was grown overnight and cells harvested by centrifugation at 8,000 g for 15 min. The cell pellet was resuspended in 3.95 ml 10 mM Tris-HCl, 1.5 M NaCl (pH 8.0), and 100 µl 50 mg/ml lysozyme was added. The cell suspension was incubated on ice for 5 min, and 0.6 ml 0.5 M ethylenediaminetetraacetic acid (EDTA) (pH 7.5) and 0.25 ml 20% (w/v) sodium dodecyl sulfate (SDS) were added. Following incubation on ice for a further 5 min, 100 µl 20 mg/ml proteinase K was added and the cell lysate incubated at 55°C overnight. Genomic DNA was then extracted twice with phenol/chloroform/isoamyl alcohol (25:24:1) and ethanol precipitated. Genomic DNA was spooled, dissolved in Tris-EDTA (TE) buffer, treated with RNase, and stored at −20°C.

Construction of the *Halothermothrix orenii* genomic DNA library

Conventional recombinant DNA techniques were used (Sambrook et al. 1989). Briefly, *Halothermothrix orenii* genomic DNA, partially digested with *Sau*IIIA restriction enzyme, was size fractionated using polyacrylamide gel electrophoresis and 2- to 10-kb fragments were electroeluted. Eluted DNA fragments were ligated to *Bam*HI-digested and dephosphorylated pBluescriptSK+ vector. An aliquot of the ligation mixture was electroporated into

DH10B electrocompetent cells (Gibco BRL, Rockville, MD, USA), and white recombinant transformants were selected after overnight growth on MacConkey agar plates containing 100 µg/ml ampicillin (Jennings and Beacham 1989). Recombinant plasmid-containing colonies were inoculated into 150 µl Luria-Bertani (LB) ampicillin media in microtiter plates, grown overnight at 37°C, and preserved by storing at –70°C after addition of sterile glycerol to 40%.

DNA sequencing

Plasmids from randomly selected clones were purified using QIAprep (Qiagen, Chatsworth, CA, USA) spin columns and used as the template for sequencing. Sequencing reactions were prepared in thin-walled 0.2-ml polymerase chain reaction (PCR) microfuge tubes with purified plasmid, Big-Dye Terminator Ready Reaction Mix, and T3 or T7 universal primers as recommended by the manufacturer (Perkin-Elmer, Norwalk, CT, USA). The reactions were placed in an Idaho Rapid Cycler (Idaho Technologies, Idaho Falls, ID, USA) and cycled using the parameters recommended for use with the BigDye terminator kit. Nucleotide sequences were determined using an ABI 377 automated DNA sequencer at the Griffith University Molecular Biology Facility.

Sequence analysis

Halothermothrix orenii genomic DNA sequence data obtained were edited to remove vector DNA sequences and analyzed by similarity searches against the nonredundant Genbank database (Benson et al. 1999) using NCBI BLASTX software found on the World Wide Web at http:// www.ncbi.nlm.nih.gov/BLAST/. A number of genomic sequence tags that generated long, high amino acid matches were selected and the nucleotide sequences used to determine codon bias using CodonW software (http:// www.molbiol.ox.ac.uk/cu/codonW.html). Amino sequences from BLASTX alignments with high matches to characterized enzymes were extracted and an amino acid profile determined using BioEdit software (http:// www.mbio.ncsu.edu/RNaseP/info/programs/BIOEDIT/ bioedit.html)

Results and discussion

Construction of a *Halothermothrix orenii* genomic library and genes from *Halothermothrix orenii*

An initial *Halothermothrix orenii* genomic DNA library consisting of 3,360 clones with an average insert size of approximately 3.5 kb was prepared in pBluescriptSK+vector. T3 and T7 primer sequencing of 77 plasmids generated 154 sequence tags, totaling approximately 85 kb of *H. orenii* genome sequence. Sequence tags were submitted for

analysis by searching for sequence homology against the nonredundant Genbank database using BLASTX. In general, sequences with bit scores greater than 80 were considered to be high matching, although a number of sequences with lower scores considered to be significant on examination of individual alignments are also included. In total, 66 sequence tags with significant similarity to proteins with assigned function were identified, and a further 15 sequence tags with homology to conserved hypothetical proteins without assigned functions were identified.

Detailed descriptions of the 81 sequence tags identified in this study with significant homology to characterized and hypothetical proteins are listed in Table 1. Based on BLASTX search results, the sequence tags were classified into protein functional categories involved in cell processes such as cell structures (e.g., flagella), intermediate metabolism (e.g., enzymes involved in amino acid metabolism), information pathways (e.g., DNA helicase, DNA gyrase, and exonucleases), and a number of enzymes involved in fermentative energy production (e.g., hydrogenases).

Sequence tag matches for histidyl-tRNA synthetase, imidazoleglycerol-phosphate dehydratase, acetolactate synthase, and periplasmic (Ni-Fe-Se) hydrogenase were observed for inserts from two different clones. In each case, the corresponding nucleotide sequences did not match, and in the case of the hydrogenase gene matches, overlapping sequences were obtained (see following). The relatively small number of duplicates obtained in the analysis does not suggest any significant bias in the constructed genomic DNA library and may be the result of multiple gene copies being present in the *Halothermothrix orenii* genome.

The numerical distribution of highest sequence matches among different organisms (Table 2) is biased toward those with complete, annotated genome sequences in databases. 16S rRNA gene sequence analysis places H. orenii as a member of the family Haloanaerobiaceae of the phylum represented by the low G+C DNA-containing gram-positive bacteria. As would be expected, the distribution of sequence tag matches is biased toward the only completely sequenced member of the low G+C DNA gram-positive phylum, Bacillus subtilis (Kunst et al. 1997). Another interesting aspect of the analysis is that high matches were also obtained against the slightly halophilic, thermophilic members of domains Bacteria (e.g., Aquifex and Thermotoga) and Archaea (e.g., Desulfurococcus, Pyrococcus, and Archaeoglobus). Whether this is the result of the halophilic nature or the thermophilic nature of Halothermothrix orenii proteins can only be elucidated with certainty when more sequence data are available for the genomes of moderate halophiles.

A number of sequence tags that provide insight into the poorly characterized genetics and biochemistry of *H. orenii* were identified and are discussed in further detail here. These sequence tags include those with homology to V-type ATPase, a number of hydrogenases, and sucrose phosphate synthase. Additionally, a number of sequence tags with homology to enzymes of potential for industrial applications are discussed.

V-type ATPase

Sequence tag 23D6/T7 was found to have very high homology to the conserved catalytic A subunit of V-type ATPase. a class of enzymes found primarily in vacuolar vesicles in domain Eukarya and in plasma membranes from Archaea. Most members of the domain Bacteria express only distantly related F-type ATPases. However, V-ATPases have been identified and characterized in a few members of the domain *Bacteria*, including the Na⁺-transporting ATPases from Enterococcus hirae (Takase et al. 1993) and Caloramator fervidus (formerly Clostridium fervidus) (zu Bentrup et al. 1997) and H⁺-transporting ATPases from members of the genus Thermus (Tsutsumi et al. 1991). The highest match for the Halothermothrix orenii V-ATPase sequence was with the V-ATPase from the archaeon *Desulfurococcus* (Shibui et al. 1997), although as the sequence tag encodes an extremely well conserved region, more sequence data are required to draw detailed phylogenetic conclusions. High matches were also obtained with V-ATPases from other members of the domain Bacteria and other members of the domain Archaea (known as A-ATPases), including extreme halophiles such as Halobacterium salinarium (Fig.1).

In members of the order Haloanaerobiales studied to date, high intracellular KCl levels osmotically balance high extracellular NaCl concentrations. Intracellular Na+ concentrations were found to be about 0.5 to 0.6 times the extracellular Na⁺ concentrations, remaining proportional at most external salt concentrations. Intracellular Cl- was found to be very similar to that of the external environment, and K⁺ and Mg²⁺ ions were found to be incorporated into cells against a concentration gradient (Rengpipat et al. 1988). Oren (1986) suggested that members of the order Haloanaerobiales generate a membrane potential by ATP hydrolysis to drive intracellular potassium accumulation. In the related thermophilic, fermentative anaerobe Caloramator fervidus, a V-ATPase was shown to act as an active primary ion pump, generating an electrochemical Na+ membrane gradient for transport of substances into the cell. An Na+-stimulated V-ATPase has also been detected in the membrane of the facultatively anaerobic, halophilic, alkaliphilic bacterium Amphibacillus sp. M12 (Kaieda et al. 1998) and is also thought to be involved in generating a transmembrane Na+ gradient for amino acid transport and motility. On the basis of these data, ATP-powered Na+ translocation to generate a membrane potential for K⁺ accumulation provides an appealing hypothesis for the likely role of V-ATPase in Halothermothrix orenii.

Hydrogenases

Several different sequence tags with homology to hydrogenase and hydrogenase-associated proteins were identified. Hydrogenases catalyze the reversible oxidation of H₂ gas and, as *Halothermothrix orenii* is a hydrogen-producing fermentative organism, the presence of these genes would be expected. The sequence tag corresponding to clone 23B08/

Table 1. List of *Halothermothrix orenii*-derived sequence tags having matches to known gene products in other organisms

Accession number	Gene description	Organism	Length of ORF	Score (bits)	Clone / Primer
Intermediate metabolism					
gi 2621546	Acetolactate synthase	Methanobacterium thermoautotrophicum	92	113	10B09/T3
dbj BAA17984	Acetolactate synthase	Synechocystis sp.	89	81.5	23A03/T
sp P29726 PURA_BACSU	Adenylosuccinate synthetase	Bacillus subtilis	125	158	10D11/T
emb CAB49570.1	Alpha-glucan phosphorylase	Pyrococcus abyssi	197	104	10B03 / T
dbj BAA30246	Aminomethyltransferase	Pyrococcus horikoshii	107	100	10E06 / T3
sp P36772 LON_BACBR	ATP-dependent protease La	Bacillus brevis	144	138	23D04 / T
gi 2984001	C-terminal fumarate hydratase, class I	Aquifex aeolicus	80	102	10B10 / T3
gb AAC84034.1	Diapophytoene dehydrogenase CrtN	Heliobacillus mobilis	182	157	23C12 / T
emb CAA04932	Esterase*	Thermotoga maritima	97	94.4	23A12/T
sp P19210 FPG_BACFI	Formamidopyrimidine-DNA glycosylase	Bacillus firmus	136	129	23D03/T
ref NP_000145.1	Galactokinase 1	Homo sapiens	174	155	23B05 / T
splO22493 GSH1_LYCES	Gamma-glutamylcysteine synthetase	Lycopersicon esculentum	146	79.6	10A06/T
gi 2983123	Glutamyl-tRNA amidotransferase subunit B	Aquifex aeolicus	58	72.6	23A07/T
emb CAB50351.1	Glycerate dehydrogenase	Pyrococcus abyssi	153	173	23C05 / T
sp Q9X1E4 GLK2_THEMA	Glycerol kinase 2	Thermotoga maritima	54	69.9	23D12/T
emb CAB10270.1	Imidazoleglycerol-phosphate dehydratase	Arabidopsis thaliana	134	136	10A04/T
gi 2982780	Imidazoleglycerol-phosphate dehydratase	Aquifex aeolicus	114	143	10A07/T
emb CAB38894.1	Integrase	Streptomyces coelicolor	199	95.9	23B07 / T
sp P32099 LPLA_ECOLI	Lipoate-protein ligase A	Escherichia coli	63	71.4	10D10/T
gi 2342551	Methylcobamide:CoM methyltransferase isozyme A	Methanosarcina barkeri	160	74.5	10C12 / T
gi 2293201	Peptidase	Bacillus subtilis	120	139	10D02/T
gb AAF05093.1 AF150930_2	Phosphoribosyl formimino-5-aminoimidazole isomerase	Thermoanaerobacter ethanolicus	231	136	10A04/T
sp P12039 PUR2_BACSU	Phosphoribosylamine-glycine ligase	Bacillus subtilis	148	100	10D03 / T
sp P77836 PDP_BACST	Pyrimidine-nucleoside phosphorylase PynP	Bacillus stearothermophilus	178	220	10B06/T
dbj BAA13561.1	Pz-peptidase	Bacillus licheniformis	150	133	10D02/T
pir E53402	Serine <i>O</i> -acetyltransferase	Bacillus stearothermophilus	120	186	10D03/T3
gi 1001295	Sucrose phosphate synthase*	Synechocystis sp.	72	80.4	23E03/T
sp P31014 TNA1_SYMTH	Tryptophanase 1	Symbiobacterium thermophilum	41	60.9	10A01 / T
nformation pathways	A LIBNA A	D : 11 1 - 11	455	400	40005.45
sp O32038 SYD_BACSU sp P94604 GYRB_CLOAB	Aspartyl-tRNA synthetase DNA gyrase subunit B	Bacillus subtilis Clostridium	175 209	182 209	10B07 / T 10D12 / T
IDAA 470IGD CD DA CGLI		acetobutylicum	177	107	10000 /5
sp P23479 SBCD_BACSU	Exonuclease SbcD homologue	Bacillus subtilis	177	127	10D09/T
sp P50830 YPRA_BACSU	Helicase	Bacillus subtilis	148	218	10D04/T
gil2982856	Histidyl-tRNA synthetase	Aquifex aeolicus	146	68.7	10A07/T
splO32422 SYH_STAAU	Histidyl-tRNA synthetase m4C-Methyltransferase	Staphylococcus aureus	150	156	10B07 / T
gb AAD35415.1 AE001714_6	3	Thermotoga maritima Bacillus subtilis	91 185	72.6 172	10B01 / T 10D12 / T
sp P05651 RECF_BACSU	Recombination protein RecF	Deinococcus radiodurans	164	120	
gb AAF10128.1 AE001913_2 Bioenergetics	Replicative DNA helicase	Demococcus radioaurans	104	120	10D11/T
gi 2983520	Hydrogenase accessory protein HypA	Aquifex aeolicus	64	107	23A04/T
		Azotobacter chroococcum		84.7	
sp Q43950 HYPF_AZOCH gb AAD33071.1 AF148212_1	Hydrogenase maturation protein HypF Hydrogenase-1*	Clostridium thermocellum		181	23A04/T 23B08/T
sp P13063 PHSS_DESBA	Periplasmic (Ni-Fe-Se) hydrogenase*	Desulfomicrobium baculatum	149	102	23B03 / T
gi 3420957	Periplasmic (Ni-Fe-Se) hydrogenase*	Desulfovibrio baculatus	160	101	23B03/T
pdb 1CC1 S	Periplasmic (Ni-Fe-Se) hydrogenase*	Desulfonicrobium baculatum	66	68.3	30A02/T
gb AAB64416.1 Fransmembrane transport	V-ATPase A subunit*	Desulfurococcus sp. SY	150	257	23D06/T
gb AAB85112.1	Manganese transport system membrane protein	Methanobacterium thermoautotrophicum	177	108	23C02/T7

Table 1. (Continued)

Accession number	Gene description	Organism	Length of ORF	Score (bits)	Clone / Primer
Signal transduction					
gi 2688139	Acid-inducible protein	Borrelia burgdorferi	101	61.6	10C07/T3
emb CAA53764	Chemotaxis response regulator CheY	Listeria monocytogenes	33	44.1	10C02/T7
splQ56310 CHEA_THEMA	Chemotaxis sensor histidine kinase CheA	Thermotoga maritima	181	141	10C08/T3
sp P54663 DEGS_BACBR	Sensor protein DegS	Brevibacillus brevis	169	119	23C05/T3
sp Q45831 REGA_CLOAB	Transcription regulatory protein RegA	Clostridium acetobutylicum	142	113	10A01/T7
sp P06964 CYTR_ECOLI	Transcriptional repressor CytR	Escherichia coli	118	101	23A09/T7
emb CAB12514	Two-component sensor histidine kinase YesN	Bacillus subtilis	152	89.3	10E05/T7
sp P39779 CODY_BACSU	Vegetative protein CodY	Bacillus subtilis	179	123	10C08 / T7
Cell structure and processes					
gb AAD36435.1 AE001790_7	Flagellar basal-body rod protein FlgC	Thermotoga maritima	102	117	10C02/T3
sp P35528 FLIP_BACSU	Flagellar biosynthetic protein FliP	Bacillus subtilis	88	109	23C04/T3
gi 3322960	Flagellar hook-associated protein 1 FlgK	Treponema pallidum	124	65.6	10C05/T7
sp Q57511 FLIM_BORBU	Flagellar motor switch protein FliM	Borrelia burgdorferi	156	144	23C04/T7
gi 2983377	Flagellar hook basal-body protein FlgG	Aquifex aeolicus	195	224	10C01/T3
pir JC4505	Flagellar motor switch protein FliY	Treponema pallidum	42	58.2	30A04/T3
sp P30725 DNAJ_CLOAB	Heat-shock protein DnaJ	Clostridium	170	170	23D05/T3
•	•	acetobutylicum			
sp Q45551 DNAK_BACST	Heat-shock protein DnaK	Bacillus	131	214	23D05 / T7
		stearothermophilus			
splQ59240 GRPE_BACST	Heat-shock protein GrpE	Bacillus	171	125	10D05 / T7
II 'ID A A 10.0501		stearothermophilus	177	106	10006 /50
dbj BAA12652	Penicillin-binding protein DacF	Bacillus subtilis	177	136	10B06 / T3
sp P16919 RHSD_ECOLI	RHSD protein precursor	Escherichia coli	398	71.4	10A05 / T7
emb CAB50070.1	UTP-glucose-1-phosphate uridylyltransferase	Pyrococcus abyssi	72	73	10D07/T7
sp Q07833 WAPA_BACSU Hypothetical proteins without	Wall-associated protein precursor	Bacillus subtilis	107	68.7	10A05/T3
assigned function	Heavile division and dis	A .C I	106	110	10D10 /T2
gi 2984375	Hypothetical protein	Aquifex aeolicus	126	112	10D10 / T3
gi 2649934	Hypothetical protein	Archaeoglobus fulgidus	171	94.8	10C12 / T7
sp P50840 YPSC_BACSU	Hypothetical 43.5-kDa protein	Bacillus subtilis	80	82.7	10C04 / T7
sp P50837 YPRB_BACSU	Hypothetical protein	Bacillus subtilis	159	80	10D04/T3
sp Q08794 YCXC_BACSU	Hypothetical 34.1-kDa protein	Bacillus subtilis	150	93.6	10C04/T3
sp P37565 YACC_BACSU	Hypothetical 31.8-kDa protein	Bacillus subtilis	135	122	10A08/T7
sp Q99171 YMFB_BACSU	Hypothetical 26.4-kDa protein	Bacillus subtilis	169	180	10A09/T3
sp P46347 YQFG_BACSU	Hypothetical 17.8-kDa protein	Bacillus subtilis	62	75.7	23A10/T3
emb CAB49194.1	Hypothetical protein	Pyrococcus abyssi	148	157	23D12 / T3
emb CAA20296	Hypothetical protein SC9A10.09	Streptomyces coelicolor	144	158	10A09/T7
dbj BAA18743	Hypothetical protein	Synechocystis sp.	145	180	23A05/T3
dbj BAA10817	Hypothetical protein	Synechocystis sp.	136	105	23A02 / T7
dbj BAA17400	Hypothetical protein	Synechocystis sp.	145	146	23A05 / T7
dbj BAA17405	Hypothetical protein	Synechocystis sp.	105	92.4	23B08 / T3
gb AAD36177.1 AE001769_7	Conserved hypothetical protein	Thermotoga maritima	144	102	10E08/T3

Sequence tags discussed in detail in the text are indicated with an asterisk

 Table 2. Sequences from the genera most frequently matching Halothermothrix orenii sequence tags

Genus	Number of matching clones	Genome sequence available		
Bacillus	25	Yes		
Aquifex	7	Yes		
Thermotoga	6	Yes		
Pyrococcus	5	Yes		
Synechocystis	5	Yes		
Clostridium	4	No		

T7 was found to be homologous to Fe hydrogenase from the anaerobic thermophile *Thermotoga maritima* (Verhagen et al. 1999). The sequence tag from clone 23B03/T7, and partially overlapping sequences from 23B03/T3 and 30A02/T3, spanned a region of the *H. orenii* genome with coding regions homologous to large and small Ni-Fe-Se hydrogenase subunits from sulfate-reducing bacteria. The highest matches were obtained with Ni-Fe-Se hydrogenase from *Desulfomicrobium baculatum* (Garcin et al. 1999). This result indicates that, as in sulfate-reducing bacteria, more than one class of hydrogenase is present in *H. orenii*.

Fig. 1. Halothermothrix orenii putative V-ATPase partial sequence aligned to V-ATPase alpha-subunits of Desulfurococcus mobilis, Enterococcus hirae, Thermus aquaticus, and Halobacterium salinarium

```
H. orenii
                  1 RGIKKPLLTGQRVFDTFFPLGMGGTAAIPGGFGAGKTMTHHQLAKWSSADIIVYVGCGER
D. mobilis
               202 LPPEVPLITGORTIDTFFSIAKGGTAAIPGPFGSGKTVTQHQLAKWSDAQVVVYIGCGER
               203 LNPDVPMITGQRVIDTFFPVTKGGAAAVPGPFGAGKTVVOHOIAKWSDVDLV
E. hirae
               199 LDPNTPFLTGMRILDVLFPVAMGGTAAIPGPFGSGKTVTQQSLAKWSNADVVVYVGCGER
T. aquaticus
               206 QTPTEPLVSGQRILDGLFPIAKGGTAAIPGPFGSGKTVTQQSLAKFADADIVVYI
H. salinarium
H. orenii
                61 GNEMTDVLEEFPKLEDPSTGKSMMERTVLIANTSNMPVAAREASIYTGITIAEFYRI
D. mobilis
               262 GNEMTDVLEEFPKLKDPKTGKPLMERTVLIANTSNMPVAAREASIYTGITIAEYFRDGGY
E. hirae
               263 GNEMTDVV<mark>N</mark>EFPELIDPNTGESLMERTVLIANTSNMPVAAREASIYTGITIAEYFRDMGY
T. aquaticus
               259 GNEMTDVLVEFPELTDPKTGGPLMHRTVLIANTSNMPVAAREASIYVGVTIAEYFRDOGF
H. salinarium
                   GNEMTEVIEDFPELPDPQTGNPLMARTTLIANTSNMPVAGRESCIYTGITIAEYYRDMGY
H. orenii
               121 MVALMADSTSRWAEALREISGRLEEMPAEEGFPAYLPSRLAEFYERAGYVKTLCODRE-G
D. mobilis
E. hirae
T. aquaticus
H. salinarium
```

Sucrose phosphate synthase

Sequence tag 23E3/T7 was found to have homology to a sucrose phosphate synthase (SPS). SPS, a key enzyme in sucrose biosynthesis, has been identified in plant tissue and some unicellular eukaryotic algae. The only prokaryotes shown to date to possess SPS activity are the cyanobacteria Anabaena sp. PCC7119 and Synechocystis sp. PCC 6803. The SPS gene from Synechocystis sp. PCC 6803 has been identified in whole-genome sequencing, cloned, and expressed in an active form in E. coli (Curatti et al. 1998). BLAST searches against the Genbank unfinished microbial genome sequence database indicated that a region of the Thiobacillus ferrooxidans genome encoding a 705-aminoacid open reading frame (ORF) showed high homology to the Synechocystis SPS sequence. The SPS homologous ORF in H. orenii clone 23E3 was sequenced using a primer walking strategy and found to encode a complete, 496amino-acid protein. Approximately 200 C-terminal amino acids were truncated from the putative H. orenii SPS compared to the Synechocystis and putative T. ferrooxidans proteins, which are both about 700 amino acids in length. Although the missing C-terminus region in the H. orenii enzyme may indicate it has a different, related catalytic activity, the N-terminal amino acid region, thought to be involved in binding of the substrate fructose-6-phosphate, is reasonably well conserved in all three bacterial SPS homologues (Fig.2). The other proposed substrate-binding region (UDP [uridine diphosphate] glucose) is poorly conserved in all three sequences, suggesting it may have been incorrectly identified or that each enzyme has a different catalytic activity or specificity.

Interestingly, biosynthesis of sucrose, along with other potential osmoprotectant compounds such as trehalose and glycinebetaine, has been observed under salt or osmotic stress conditions in Cyanobacteria. These compounds

appear to play a role similar to that of compatible solutes in aerobic bacterial moderate halophiles, although sucrose itself has also been suggested as an intercellular transport compound. Lunn et al. (1999) were unable to observe any change in SPS gene expression in salt-stressed Synechocystis cells and therefore concluded that SPS did not play a significant role in salt-stress adaptation. Why bacterial genes encoding SPS homologues have been detected in Synechocystis sp. and now in Thiobacillus ferroxidans and Halothermothrix orenii (as described in this article) and not other bacterial genomes studied thus far is not clear. There appears to be no common survival requirement for sucrose synthesis in these bacteria, because they have very different phylogeny, physiology, and ecology. Purification and biochemical characterization of T. ferroxidans and H. orenii putative SPSs will allow the properties and physiological role of these enzymes to be investigated.

Industrial enzymes

A number of genes with potential for industrial applications were also identified. These enzymes would be of particular utility in applications in which activity or stability at a range of salt levels and high temperatures is required. These genes include a number of peptidases (clones 10D2, 23D4/T3) and an esterase (23A12/T7). Figure 3 is an alignment of the putative esterase region from *H. orenii* with the equivalent region of the closely related *Thermotoga maritima* enzyme.

Codon usage

Halothermothrix orenii codon bias was determined using CodonW software from ten sequence tags with high

Fig. 2. Putative substrate-binding regions of *Halothermothrix* orenii, *Thiobacillus ferroxidans*, and *Syncehocystis* sp. SPS homologues. *Boxed regions* indicate putative substrate-binding domains identified by Curatti et al. (1998). *Box 1* is the fructose-6-phosphate-binding regions; *box 2* is the UDP glucose-binding region

Fig. 3. Alignment of *Halothermothrix orenii* putative esterase partial amino acid sequence to *Thermotoga maritima* esterase

matches to known proteins and ORFs longer than 150 amino acids. A number of sequenced genes related to sugar and polysaccharide metabolism identified from *Halothermothrix orenii* genomic DNA library activity screening, but not reported in this article, were also used to determine overall codon bias. A total of 3,554 codons were used for *H. orenii* codon bias analysis and these results, along with the codon bias for *Clostridium thermocellum* and *E. coli*, are listed in Table 3.

The codon bias for *H. orenii* is quite distinct from that of *C. thermocellum* and *E. coli*. The overall G+C% of the codons was 42.9% with a third position G+C content of 38.6%. The overall G+C% of the *H. orenii* genome was found to be 39.6% (Cayol et al. 1994). The slightly higher G+C% of 42.9% observed for *H. orenii* coding sequences suggests the noncoding regions of the genome are relatively A+T rich.

Amino acid usage

Previous studies have indicated a number of broad trends in amino acid usage of enzymes from extreme halophiles of the domain Archaea. The most distinct characteristic is a relatively high level of acidic amino acids observed in both individual proteins and amino acid composition of total cellular proteins (Lanyi 1974). Crystal structures have indicated that these acidic residues normally form part of the protein surface (Madern et al. 2000). Studies on the anaerobic moderate halophiles Halobacteroides halobius and Haloanaerobium praevalens by Oren (1986) indicated that these bacteria show similar trends in amino acid usage. Although a slightly increased level of positively charged amino acids has been observed in thermophilic enzymes when compared to equivalent enzymes from mesophiles, most of the adaptations in thermophilic enzymes are specific structural adaptations such as increased salt bridges.

These structures have little discernible influence on the total amino acid content of both individual proteins and entire proteomes.

To investigate the amino acid usage of *Halothermothrix* orenii, amino acid sequences from high matching genes identified in BLASTX searches were pooled and used to generate an amino acid composition profile using BioEdit software. The excess acidic amino acid content of *H. orenii*, based on the analysis of approximately 8,000 amino acids from partial sequences of more than 60 proteins, is presented in Table 4. The results indicate that *H. orenii* lacks the acidic amino acid excess observed in other members of the order Haloanaerobiales, such as Haloanaerobium praevalens, and extreme halophiles of the domain Archaea such as Haloferax volcanii. Although the method used cannot be considered a completely accurate means of determining acidic amino acid excess, the size and random nature of the sample should be sufficient to ascertain any distinctive trends. Comparative analysis of amino acid sequences of individual enzymes from Halothermothrix orenii, including a number of secreted enzymes that have been subcloned into E. coli and shown to be active at high temperatures and salt concentrations, also confirms this lack of elevated acidic amino acid levels (unpublished results).

A possible explanation for this difference lies in the thermophilic and moderately halophilic nature of *H. orenii*. Many enzymes with an acidic amino acid excess from mesophilic extreme halophiles of the domain *Archaea* are unusually thermophilic at high salt concentrations (Keradjopoulos and Holldorf 1977). However, this thermophilic character is often lost at low and intermediate salt concentrations. Excellent examples of this characteristic are the isocitrate dehydrogenase of *Haloferax volcanii* (Camacho et al. 1995) and glucose dehydrogenase of *Haloferax mediterranei* (Bonete et al. 1996). Both these enzymes are enzymatically active in the absence of salt but only show significant thermostability at salt concentrations greater

Table 3. Codon bias in Halothermothrix orenii, Escherichia coli, and Clostridium thermocellum

Residue	Codon	on <i>H. orenii</i>		C. thermocellum (%) ^{a,b}	E. coli (%) ^{a, b}	Residue	Codon	H. orenii		C. thermocellum (%) ^{a, b}	E. coli (%) ^{a,b}
		No. of codons	%ª	(70)	(70),			No. of codons	% ^a	(70)	(70)
Phe	TTT	110	72	60	51		GCG	10	4	16	34
	TTC	42	28	40	49	Tyr	TAT	131	78	65	53
Leu	TTA	75	24	13	11	-	TAC	37	22	35	47
	TTG	25	8	28	11	His	CAT	47	75	59	52
	CTT	60	19	32	10		CAC	16	25	41	48
	CTC	37	12	8	34	Gln	CAA	16	19	35	70
	CTA	20	6	2	3		CAG	67	81	65	30
	CTG	99	31	18	55	Asn	AAT	134	67	50	39
Ile	ATT	114	46	42	47		AAC	66	33	50	61
	ATC	54	22	15	46	Lys	AAA	139	62	62	76
	ATA	81	32	42	7	,	AAG	87	38	38	24
Met	ATG	61	100	100	100	Asp	GAT	180	76	52	59
Val	GTT	105	41	69	29	-1	GAC	56	24	48	41
	GTC	45	18	8	20	Glu	GAA	165	65	69	70
	GTA	62	24	36	17		GAG	89	35	31	30
	GTG	43	17	17	34	Cys	TGT	27	75	47	43
Ser	TCT	35	32	13	19	,	TGC	9	25	53	57
	TCC	33	30	17	17	Trp	TGG	48	100	100	100
	TCA	35	32	27	12	Arg	CGT	16	8	10	42
	TCG	7	6	10	13	0	CGC	14	7	6	37
Pro	CCT	55	41	31	16		CGA	7	3	1	5
	CCC	40	30	9	10		CGG	51	25	4	8
	CCA	16	12	20	20	Ser	AGT	56	75	14	13
	CCG	22	17	40	55		AGC	19	25	19	27
Thr	ACT	40	24	27	21	Arg	AGA	37	18	55	4
	ACC	75	45	19	43	J	AGG	77	38	24	3
	ACA	43	26	41	13	Gly	GGT	108	37	32	38
	ACG	9	5	13	23	,	GGC	36	12	19	40
Ala	GCT	78	34	27	19		GGA	83	29	44	9
	GCC	102	45	16	25		GGG	63	22	6	13
	GCA	37	16	41	22	Total codons	3,554				

^aIndividual codon percentage for each amino acid type

Table 4. Excess amino acids in H. orenii and other members of domains Bacteria and Archaea

Organism	Halothermothrix orenii	Haloanaerobium praevalens ^b	Haloferax volcanii ^c	Aquifex aeolicus ^c
Excess acidic amino acids ^a	-11.46	120.0	84.41	-19.5

^aExcess acidic over basic amino acids calculated according to the following (Asp+Glu)–(His+Lys+Arg) and expressed as amino acid frequency per 1,000 residues

than 1 M. The acidic surface amino acid approach to stability and activity at high salt levels may therefore be advantageous for mesophilic, moderately halophilic anaerobes that do not require thermostable enzymes. *Halothermothrix orenii* requires enzymes that are stable and active at high

temperatures and a range of salt concentrations (5%–20%) and therefore appears to have developed enzymes with distinct structural adaptations for stability and activity under these conditions.

^bData obtained from the KDRI Codon Usage Database (http://www.kazusa.or.jp/codon/)

^bDetermined chemically from whole-cell proteins (Oren 1986)

^cDetermined from the KDRI Codon Usage Database (http://www.kazusa.or.jp/codon/)

References

- Benson DA, Boguski MS, Lipman DJ, Ostell J, Ouellette BF, Rapp, BA, Wheeler DL (1999) GenBank. Nucleic Acids Res 27(1):12–17
- Bonete MJ, Pire C, Lorca FI, Comacho ML (1996) Glucose dehydrogenase from the halophilic Archaeon *Haloferax mediterranei*: enzyme purification, characterisation and N-terminal sequence. FEBS Lett 383(3):227–229
- Camacho ML, Brown RA, Bonete MJ, Danson MJ, Hough DW (1995) Isocitrate dehydrogenases from *Haloferax volcanii* and *Sulfulobus solfataricus*: enzyme purification, characterisation and N-terminal sequence. FEMS Microbiol Lett 134(1):85–90
- Cayol JL, Ollivier B, Patel BKC, Prensier G, Guezennec J, Garcia JL (1994) Isolation and characterization of *Halothermothrix orenii* gen. nov., sp. nov., a halophilic, thermophilic, fermentative, strictly anaer-obic bacterium. Int J Syst Bacteriol 44(3):534–540
- Cayol JL, Ducerf S, Patel BK, Garcia JL, Thomas P, Ollivier B (2000) Thermohalobacter berrensis gen. nov., sp. nov., a thermophilic, strictly halophilic bacterium from a solar saltern. Int J Syst Evol Microbiol 50(pt 2):559–564
- Curatti L, Folco E, Desplats P, Abratti G, Limones V, Herrera-Estrella L, Salerno G (1998) Sucrose-phosphate synthase from *Synechocystis* sp. strain PCC 6803: identification of the *spsA* gene and characterisation of the enzyme expressed in *Escherichia coli*. J Bacteriol 180(24):6776–6779
- Garcin E, Vernede X, Hatchikian EC, Volbeda A, Frey M, Fontecilla-Camps JC (1999) The crystal structure of a reduced [NiFeSe] hydrogenase provides an image of the activated catalytic center. Struct Fold Des 7(5):557–566
- Jennings MP, Beacham IR (1989) MacConkey agar as an alternative to X-gal in the detection of recombinant plasmids. Biotechniques 7(10):1082
- Kaieda N, Wakagi T, Koyama N (1998) Presence of Na⁺ stimulated V-type ATPase in the membrane of a facultatively anaerobic and halophilic alkaliphile. FEMS Microbiol Lett 167: 57–61
- Keradjopoulos D, Holldorf AW (1977) Thermophilic character of enzymes from extreme halophilic bacteria. FEMS Microbiol Lett 1:179–182
- Kunst Brans A, Braun M, Brignell SC, Bron S, Brouillet S, Bruschi F, Ogasawara N, Moszer I, Albertini AM, Alloni G, Azevedo V, Bertero MG, Bessieres P, Bolotin A, Borchert S, Borriss R, Boursier L, Bruschi CV, Caldwell B, Capuano V, Carter NM, Choi SK, Codani JJ, Connerton IF, Cummings NJ, Daniel RA, Denizot F, Devine KM, Dusterhoft A, Ehrlich SD, Emmerson PT, Entian KD, Errington J, Fabret C, Ferrari E, Foulger D, Fritz C, Fujita M, Fujita Y, Fuma S, Galizzi A, Galleron N, Ghim S-Y, Glaser P, Goffeau A, Golightly EJ, Grandi G, Guiseppi G, Guy BJ, Haga K, Haiech J, Harwood CR, Henaut A, Hilbert H, Holsappel S, Hosono S, Hullo M-F, Itaya M, Jones L, Joris B, Karamata D, Kasahara Y, Klaerr-Blanchard M, Klein C, Kobayashi Y, Koetter P, Koningstein G, Krogh S, Kumano M, Kurita K, Lapidus A, Lardinois S, Lauber J, Lazarevic V, Lee S-M, Levine A, Liu H, Masuda S, Mauel C, Medigue C, Medina N, Mellado RP, Mizuno M, Moestl D, Nakai S, Noback M, Noone D, OReilly M, Ogawa K, Ogiwara A, Oudega B, Park S-H, Parro V, Pohl TM, Portetelle D, Porwollik S, Prescott AM, Presecan E, Pujic

- P, Purnelle B, Rapoport G, Rey M, Reynolds S, Rieger M, Rivolta C, Rocha E, Roche B, Rose M, Sadaie Y, Sato T, Scanlan E, Schleich S, Schroeter R, Scoffone F, Sekiguchi J, Sekowska A, Seror SJ, Serror P, Shin B-S, Soldo B, Sorokin A, Tacconi E, Takagi T, Takahashi H, Takemaru K, Takeuchi M, Tamakoshi A, Tanaka T, Terpstra P, Tognoni A, Tosato V, Uchiyama S, Vandenbol M, Vannier F, Vassarotti A, Viari A, Wambutt R, Wedler E, Wedler H, Weitzenegger T, Winters P, Wipat A, Yamamoto H, Yamane K, Yasumoto K, Yata K, Yoshida K, Yoshikawa H-F, Zumstein E, Yoshikawa H, Danchin A (1997) The complete genome sequence of the gram-positive bacterium *Bacillus subtilis*. Nature (Lond) 390(6657):249–256
- Lanyi JK (1974) Salt dependent properties of proteins from extremely halophilic bacteria. Bacteriol Rev 38(3):272–290
- Lunn JE, Price GD, Furbank RT (1999) Cloning and expression of a prokaryotic sucrose-phosphate synthase gene from the cyanobacterium *Synechocystis* sp. PCC 6803. Plant Mol Biol 40:297–305
- Madern D, Ebel C, Zaccai G (2000) Halophilic adaptations of enzymes. Extremophiles 4: 91–98
- Madigan MT, Oren A (1999) Thermophilic and halophilic extremophiles. Curr Opin Microbiol 2:265–269
- Matheson AT, Louie KA, Tak BD, Zuker M (1987) The primary structure of the ribosomal A-protein (L12) from the halophilic eubacterium *Haloanaerobium praevalens*. Biochimie (Paris) 69(10):1013–1020
- Oren A (1986) Intracellular salt concentrations of the anaerobic halophilic eubacteria *Haloanaerobium praevalens* and *Halobacteroides halobious*. Can J Microbiol 32:4–9
- Patel BKC, Morgan HW, Daniel RM (1985a) Fervidobacterium nodosum gen. nov., a new chemoorganotrophic caldoactive anaerobic bacterium. Arch Microbiol 14:63–69
- Patel BKC, Morgan HW, Daniel RM (1985b) A simple and efficient method for preparing anaerobic media. Biotechnol Lett 7:227–228
- Rengpipat S, Lowe SE, Zeikus JG (1988) Effect of extreme salt concentrations on the physiology and biochemistry of *Halobacteroides acetoethylicus*. J Bacteriol 170(7):3065–3071
- Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory Press, New York
- Shibui H, Hamamoto T, Yohda M, Kagawa Y (1997) The stabilising residues and the functional domains in the hyperthermophilic V-ATPase of *Desulfurococcus*. Biochem Biophys Res Commun 234:341–345
- Takase K, Yamato L, Kakinuma Y (1993) Cloning and sequencing of the genes coding for the A and B subunits of vacuolar-type Na⁺-ATPase from *Enterococcus hirae*. J Biol Chem 269:11037–11044
- Tsutsumi S, Denda K, Yokoyama K, Oshima T, Date T, Yoshida M (1991) Molecular cloning of the genes encoding the major two subunits of a eubacterial V-type ATPase from *Thermus thermophilis*. Biochim Biophys Acta 1098:13–20
- Verhagen MF, O'Rourke T, Adams MW (1999) The hyperthermophilic bacterium, *Thermotoga maritima*, contains an unusually complex iron-hydrogenase: amino acid sequence analyses versus biochemical characterization. Biochim Biophys Acta 1412(3):212–229
- zu Bentrup K, Ubbink-Kok T, Lolkema JS, Konings WN (1997) An Na $^+$ -pumping V $_1$ V $_0$ -ATPase complex in the thermophilic bacterium *Clostridium fervidus*. J Bacteriol 179(4):1274–1279